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(3.5) is replaced by D and a = - ell/Efl [11]. For most materials dRldD will be negligible . 
Moreover, for weak shocks PoR duldp = I; then if MiJp,JiJx is negligible, as is often the case, 
equation (3.16) becomes 

Dpx ell/Efl dD ell dD 
Dt =-l+a2/(R-u)2 dt = -2Efl dt· 

For the kind of device assumed, current in the external circuit, l(t), is proportional to dDldt, so 

(3.20) 

where C is cross-section area of the shocked material [12]. If the external load is resistive, 
1(t) > 0 and the analogy with the relaxing solid is close. If the external load has a resonance, 
l(t) may alternate signs, causing an analogous oscillation in the decay rate. 

(iii) Viscous fluids. For a Newtonian fluid with shear viscosity II, 

Px = p(V)+411E,J3 (3.21) 

where ~ = Ex and a = 411/3. Equation (3.5) becomes 

(3.22) 

where c2 is the hydrodynamic sound speed and Ex = (lIp) dp/dt. 
This is an interesting case because the form of equation (3.21) precludes the possibility of a 

discontinuous shock front. Were this to occur, Ex, and therefore Px, would become infinite, 
which is a contradiction. The jump conditions apply also to a steady transition connecting two 
uniform states, but that case is not interesting in the present context. If the shock transition is . 
followed by a rarefaction, the rarefaction and shock interfere in some degree, so the jump 
conditions are no longer exact. This is apparent from equation (3.22), which shows that p and p 
do not simultaneously achieve their maximum values. The locus of states connecting shock and 
rarefaction does not, therefore, form a cusp. Instead, it is a continuous convex curve 
connecting the shock line and the expansion isentrope. Moreover, the entire problem of defining 
a propagation velocity is reopened and cannot readily be settled in a satisfactory way [24]. 
However, numerical calculations have shown that under such conditions as will exist, the lower 
part of the shock profile will still closely conform to the steady profile. Also the shock jump 
conditions still describe the relations among propagation velocity, peak pressure, particle 
velocity and density reasonably well. In other words, the locus of p, v states through even a 
non-steady shock will not deviate very much from the Rayleigh line, except for very large 
viscosities. The pressure profile in this unsteady quasi-shock will be somewhat as shown in Fig. 
2. If the shock jump conditions are used to connect state A and the initial state, equation (3.16) 
applies. With B = 0 and the approximations R - u = c and dp,Jdu = R, it becomes 

Dpx = (R _ u _ c) iJpx + 211 ii 
Dt iJx 3 X· 

(3.23) 
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Fig. 2. Schematic representation of pressure-tune profile of a shock in a viscous medium. 
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Using equation (3.7), equation (3.23) becomes 

DPx=(I+U-R). +2v .. 
Dt c Px 3 Ex· 

(3.24) 

At A, Px = 0, and from equation (3.22) 2vix/3 = - pczi//2. That is, the rate of decay of the 
shock depends on strain rate at A, and this in turn depends directly on the viscosity, v. This 
result is in marked contrast with that of equations (2.1) and (2.2) and is not easily explicable. 

If the peak of the p(t) profile is chosen, instead of pAt), the situation is altered. Now i = 0 
and Px = 4vi//3 and equation (3.24) becomes 

Dpx = (~+ U - R)(dPx ) 

Dt 2 c dt <,=0 

= (~+ U - R). 4v (i). -0 
2 c 3 x-x-

(3.25) 

Since characteristics in the rarefaction following the shock are still expected to overtake the 
shock and to provide something approximating the usual hydrodynamic attenuation, it seems 
likely that the viscosity term produces an additional attenuation. Whether or not this additional 
attenuation is significant remains to be determined. 

(iv) Plastic shear-yielding solids. If, in this case, a shear stress, 'T, proportional to plastic 
strain rate exists and there is no plastic dilatation, 

'T = 2v(i/ - in/2 Px = Ps(v) + 2vi/ 

where Ps(v) represents the quasi-static dependence of P on v. Now € = i/, a = 2v, and B = o. 
The problem is exactly analogous to that for a viscous fluid. 

Combinations of the above effects are possible. Extension of the analysis to include two or 
more variables, € .. €z, etc. is straightforward. Similar relations have been used to describe wave 
propagation in chemically-reacting media[13,14]. Coleman, Chen and others have obtained 
similar equations for a variety of problems [15:-18]. 

4. THERMAL EFFECTS 

Suppose that flow behind the shock is entropic and that € = S, the specific entropy. Equation 
(3.16) follows, as before, but it now contains derivatives of S. These can be eliminated through 
use of equation (3.3) and some assumptions about the underlying thermodynamics of the 
material. . 

Let 
p~ = p~(v, s, €). 

Then 

(4.1) 

where r is the Griineisen parameter for "€ = const. Suppose the rate at which work is done on 
unit mass is 

dw _ _ * dv + * d€ 
dt - P x dt 11 dt 

and dq/dt is the rate at which heat is added. Substitution of equation (4.2) into (3.3) gives 

(4.2) 

(4.3) 

, 


